Basic Bioelement Contents in Anaerobic Intestinal Sulfate-Reducing Bacteria

Autor(en)
Ivan Kushkevych, Daryna Abdulina, Dani Dordevic, Monika Rozehnalova, Monika Vitezova, Martin Cerny, Pavel Svoboda, Simon K-M R. Rittmann
Abstrakt

The monitoring of trace metals in microbial cells is relevant for diagnosis of inflammatory bowel disease (IBD). Sulfate-reducing bacteria (SRB) represent an important factor in the IBD development. The content of trace metals in bacterial cells may reflect the functioning of the enzyme systems and the environmental impact on the occurrence of SRB. The aim of our research was to compare the content of trace elements in the cells of SRB cultures isolated from fecal samples of patients with IBD and healthy people. The contents of 11 chemical elements in the bacterial cells of SRB were analyzed by the inductively coupled plasma-mass-spectrometry (ICP-MS) method. Significant changes in the content of calcium, zinc, magnesium, potassium, and iron were observed in patients with IBD compared to healthy individuals. Through a principal component analysis (PCA), a total variability of 67.3% in the difference between the samples was explained. The main factors influencing the total variability in the bacterial cells of SRB isolated from patients suffering from IBD were the content of the micro- and trace elements, such as manganese (with power 0.87), magnesium and cobalt (0.86), calcium (0.84), molybdenum (0.81), and iron (0.78). Such changes in the elemental composition of SRB under different conditions of existence in the host may indicate adaptive responses of the microorganisms, including the inclusion of oxidative stress systems, which can lead to changes in SRB metabolism and the manifestation of parameters of IBD in humans. The use of PCA might make it possible in the future to predict the development and ratio of SRB in patients with various diseases.

Organisation(en)
Department für Funktionelle und Evolutionäre Ökologie
Externe Organisation(en)
Masaryk University, National Academy of Sciences of Ukraine (NASU), Veterinärmedizinische und Pharmazeutische Universität Brünn, Olmützer Palacky-Universität, University of Ostrava
Journal
Applied sciences-Basel
Band
11
Seiten
1-15
Anzahl der Seiten
15
DOI
https://doi.org/10.3390/app11031152
Publikationsdatum
02-2021
Peer-reviewed
Ja
ÖFOS 2012
106022 Mikrobiologie
Schlagwörter
ASJC Scopus Sachgebiete
Allgemeiner Maschinenbau, Instrumentation, Allgemeine Materialwissenschaften, Fluid Flow and Transfer Processes, Process Chemistry and Technology, Computer Science Applications
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/2a206b5d-1aa8-4ae7-873f-091dbe4be39d