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A B S T R A C T   

Succinate dehydrogenases (SDHs) and fumarate reductases (FRDs) catalyse the interconversion of succinate and 
fumarate, a reaction highly conserved in all domains of life. The current classification of SDH/FRDs is based on 
the structure of the membrane anchor subunits and their cofactors. It is, however, unknown whether this clas-
sification would hold in the context of evolution. In this work, a large-scale comparative genomic analysis of 
complex II addresses the questions of its taxonomic distribution and phylogeny. Our findings report that for types 
C, D, and F, structural classification and phylogeny go hand in hand, while for types A, B and E the situation is 
more complex, highlighting the possibility for their classification into subgroups. Based on these findings, we 
proposed a revised version of the evolutionary scenario for these enzymes in which a primordial soluble module, 
corresponding to the cytoplasmatic subunits, would give rise to the current diversity via several independent 
membrane anchor attachment events.   

1. Introduction 

Succinate dehydrogenases (succinate:quinone oxidoreductases, 
SDHs, EC 1.3.5.1) are membrane complexes that catalyse the conversion 
of succinate to fumarate and link chemiosmotic coupling to carbon 
metabolism via the TCA cycle [1]. These complexes are closely related 
and homologous to fumarate reductases (quinol:fumarate reductases, 
FRD, EC 1.3.5.4) [2]. While succinate dehydrogenases oxidize succinate 
to fumarate, reducing usually high potential ubiquinone to ubiquinol, 
fumarate reductases reduce fumarate to succinate, usually oxidizing low 
potential menaquinol back to a menaquinone [3–5]. 

1.1. Function of SDH/FRD enzymes 

These enzymes are part of aerobic and anaerobic respiratory electron 
transport chains (ETCs) as well as the only membrane component of the 
TCA cycle, and have been extensively studied since the beginning of 
20th century [4,6–72]. They are anchored in the cytoplasmic membrane 
of prokaryotes or in the inner mitochondrial membrane of eukaryotes, 
with the catalytic domain in the cytoplasm or mitochondrial matrix side, 
respectively [4]. SDH complexes might enhance the proton gradient by 
supplying reducing equivalents from succinate metabolism [73,74]. In 
addition, it is proposed that some SDH/FRD complexes might be able to 
translocate protons across the membrane [73–76], further contributing 
to the establishment of pmf, or on the contrary, as in the case of Bacillus 

subtilis [54,55,76–78], dissipate pmf by operating in reverse. In aerobic 
mitochondrial-like ETC, these reducing equivalents are transported 
through the ubiquinone pool to complexes III and IV, and these com-
plexes, in turn, extrude/pump protons [79]. 

1.2. Subunit composition and current classification 

Functionally, SDH/FRDs form three classes based on the reaction 
they perform in vivo and the type of the quinone they use: class 1 SDHs 
oxidize succinate and reduce a high-potential quinone (e.g. ubiquinone); 
class 2 FRDs reduce fumarate using a low-potential quinol (e.g. mena-
quinol), and class 3 enzymes oxidize succinate with the help of a low- 
potential quinone [2]. So far, it is not possible based on the primary 
sequence alone to identify the reaction a certain SDH/FRD enzyme 
would catalyse without in vivo tests [2–5]. 

Structurally, SDH/FRDs complexes have a variable number of sub-
units, with prokaryotic complexes being composed of three to four 
subunits and eukaryotic complexes having between four and twelve 
subunits as in the case of Trypanosoma [80,81]. Interestingly, within 
Viridiplantae the number of subunits is not conserved, with reports of 
Brassicaceae and monocotyledonous plants having 8 different subunits 
while other Embryophyta having only 7 of those subunits, and Chlor-
ophyta only containing four traditionally conserved subunits [82–84]. 

In this analysis, we only focus on the three to four modules that are 
conserved across the three domains of life, and can be divided into the 
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catalytic or cytoplasmic part (SdhA/FrdA and SdhB/FrdB) and the an-
chor module composed of one or two subunits [3] (Fig. 1). Subunit A is a 
flavoprotein that contains a dicarboxylate binding site where the suc-
cinate to fumarate conversion takes place. This subunit is soluble and 
exposed to the cytoplasm, and contains one FAD cofactor (covalently 
bound in most organisms) [4]. The FAD group serves as the first electron 
acceptor and passes electrons onto the other subunits [2,5]. Electrons 
flow from FAD into the next electron-accepting soluble subunit (SdhB) 
that contains three iron‑sulfur centers with different compositions: S1 
center ([2Fe–2S]2+,1+), S2 center ([4Fe–4S]2+,1+), and S3 
([3Fe–4S]1+,0) [4]. In the succinate oxidation reaction, the S1 center is 
the first to accept electrons from FAD [2,5]. In case of fumarate reduc-
tion, the order of electron acceptors is reversed. 

The anchor part is composed of membrane subunits with varied 
cofactor content and structural motifs that served to establish the 
structural classification of this protein family [2,3,5,85]. For conve-
nience, the structural type information is given as subscript in the sub-
unit abbreviation (e.g. SdhA of type C is indicated as SdhAC). SDH/FRDs 
belonging to structural type A contain two separate membrane subunits 
(SdhCA and SdhDA), both with three transmembrane helices where two 
heme groups - a high redox midpoint potential heme group (bH) and a 
low redox midpoint potential heme group (bL) are bound [76]. For a 
long time, enzymes of this type were assumed to be a hallmark of 
archaea [3,71], although later, bacterial type A complexes were char-
acterised as well [86–88]. Interestingly, the available structure of M. 
smegmatis SDH2 of type A indicates a presence of a potential small third 
anchor subunit, titled SdhFA by the authors [88]. This subunit is 32 
amino acids long and bears no relation to the SdhFE first characterised in 
Acidianus ambivalens [89]. 

So far, enzymes of this type have been known to only have the 

succinate dehydrogenases activity, since at least in the conditions tested 
with the Mycobacterium smegmatis SDH2, fumarate reductase activity 
was not determined. [4,87]. However, due to the low number of studies 
measuring fumarate reductase activity in type A enzymes, it is not clear 
if type A enzymes function strictly in one direction. 

In type B enzymes, on the other hand, only one large membrane 
subunit (SdhCB) with five transmembrane helices is found. Similarly to 
type A, type B also binds two hemes (bH and bL). Type B enzymes were 
shown to be able to catalyse the reaction in both directions, i.e. being 
either SDHs, FRDs, or bifunctional depending on the in vivo function 
[4,74,76–78,90–96]. 

Type C and D enzymes are very similar to type A, with differences 
relying on the number of hemes groups: type C contains only one heme 
group (bH) and in type D, no heme groups are present. The existence of 
functional complexes devoid of hemes questions the functional role of 
these cofactors. The well-studied E.coli SDH enzyme 
[10,15,37,51,97–103] belongs to the structural type C, and the E.coli 
FRD enzyme [20,24,47,104–106] belongs to the type D. While both type 
C and D complexes were shown to be able to perform the succinate to 
fumarate conversion in both directions, in wild type E.coli cells type C 
SDH usually acts as a succinate dehydrogenase, while type D FRD acts as 
a fumarate reductase [2,4,99,107]. Interestingly, it also has been shown 
that in E.coli type D FRD (specifically, the FrdA subunit) not only par-
ticipates in anaerobic respiration but also under aerobic conditions 
contributes to the shift of the direction in rotation of flagella [108,109], 
by interacting with FliG, a protein that is a part of the flagellar switch 
complex, and is responsible for switching to clockwise direction. 

In the context of structural classification, so far all characterised 
eukaryotic enzymes belong to type C [21,41,81,82,110–112]. However, 
it is worth noting that besides numerous mutations within eukaryotic 

Fig. 1. - Schematic representation of SDH/FRD structural types with their respective crystallographic structure. SdhA is coloured in green, SdhB in purple, SdhC in 
pastel pink, and SdhD in light blue. SdhEE and SdhFE are coloured in grey. SdhCF is represented in a darker blue to indicate lack of homology to canonical SdhCs. 
Cofactors and numbers of membrane helices are indicated as described in the figure. The symbols “-” and “+” indicate the cytoplasmic and periplasmic sides of the 
membrane. X-Ray crystallography structure of type A is represented by the structure of M. smegmatis succinate dehydrogenase 2 (PDB: 6LUM) [134]; type B by 
W. succinogenes fumarate reductase (PDB: 2BS2) [176]; type C by E.coli succinate dehydrogenase (PDB: 1NEK) [103], type D by E.coli fumarate reductase (PDB: 3P4P) 
[105], and type F by M. smegmatis succinate dehydrogenase 1 (PDB: 7D6V) [88]. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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SDH enzymes that lead to various diseases [113,114], eukaryotic en-
zymes exhibit additional diversity, such as expressing different isoforms 
at different developmental stages [115–119] or in different tissues 
[120], having a subunit split into two [80], having a Tyr instead of His to 
coordinate heme in the anchor module [121], as well as having addi-
tional subunits in the complex [80,82–84,122]. For most of these 
additional subunits, in plants as well as Trypanosoma, the function is not 
known [80,83,84]. However, for plant subunits Sdh6 and Sdh7, it is 
proposed that they compensate for the lost helices in subunits Sdh3 and 
Sdh4 [84]. In what regards the common modules, eukaryotic enzymes 
across large phylogenetic distances are reported to have a high degree of 
identity (~80 %) for the FAD and iron‑sulfur subunits [123], while as in 
prokaryotes, their anchor subunits have low identity [123,124]. 

In 2001, a new type of SDH complexes (type E) was functionally 
characterised from the membranes of Acidianus ambivalens [89,125]. 
This type, known to be present in some Sulfolobales, is more dissimilar 
to the types described so far, having two membrane subunits with 
amphipathic helices, named SdhEE and SdhFE [89], which do not bind 
heme groups. Instead, the SdhEE subunit possesses two Cysteine-rich 
domains, whereby one binds a [4Fe–4S] center [125] and the other 
serves as a zinc binding site [126].So far, no cofactor was identified in 
SdhFE [125]. The subunit nomenclature of type E enzymes proposed in 
2001 [89] overlaps with the nomenclature for succinate dehydrogenase 
assembly factor SdhE from E.coli [127,128]. Therefore, to avoid further 
confusion, this paper will follow the historical naming of the subunits 
and use the SdhEE to refer to the anchor subunit, and not to the SdhE 
assembly factor, which is not the focus of this paper. In addition, its 
subunit B contains a second [4Fe-4S] center instead of a [3Fe–4S] 
center [89]. 

The A. ambivalens and the S. acidocaldarius enzymes most likely in 
vivo catalyse the succinate oxidation to fumarate [89,129], since both 
organisms have Caldariella quinone with a redox potential of +103 mV 
[130], which would create thermodynamic barriers for the reverse re-
action, although in vitro at least the S. acidocaldarius enzyme is reversible 
[128] Aside from Sulfolobales, other organisms, such as Cyanobacteria 
and Aquificae, reportedly have SDH/FRD complexes (in here marked as 
type E*) containing a membrane anchor subunit SdhEE but lacking 
subunit SdhFE [89,125]. In this type is also included the homologous 
methylmenaquinol:fumarate reductase complex (MFR; [131]), which it 
is located in periplasm and is upregulated under high oxidative condi-
tions [132]. 

Recently, a new structural type, type F, has been proposed [133]. So 
far, only one representative of this type has been characterised, the 
SDH1 from Mycobacterium smegmatis [88]. It is worth noting, that in 
addition to SDH1 of type F, this organism has SDH2 of type A [134], 
while other Mycobacterium organisms may in addition have a type D 
enzyme as well [135]. Type F is characterised by having only one 
transmembrane subunit with five predicted transmembrane helices with 
no bound hemes but with a Rieske FeS center cofactor [88], and with no 
detected similarity to the membrane subunits present in types A to E. 
Similarly, to the transmembrane subunit from type B, which is assumed 
be the result of a fusion event between subunits SdhC and SdhD [136], 
Hards et al proposed that type F membrane anchor subunit rearrange-
ment is the result of a potential fusion, this module being most similar to 
the type D anchor subunits [133]. 

1.3. Homology relationships of SDH/FRD complexes 

The SDH/FRD cytoplasmic subunits have homologues in other en-
zymes that share the same domains, such as L-aspartate oxidase (NadB), 
which contains a flavoprotein subunit homologous to SdhA [137], or the 
anaerobic sn-glycerol-3-phosphate dehydrogenase, in which GlpB is 
homologous to SdhA and GlpC is homologous to SdhB [138]. Also the 
adenosine-5′- phosphosulfate reductase subunit A (AprA) shares ho-
mology with SdhA [85], and in thiol:fumarate reductases, soluble 
fumarate reductases that use Coenzyme M and Coenzyme B as electron 

donors, subunit A (TfrA) is homologous to SdhA, while TfrB is homol-
ogous to both SdhB and SdhEE [139]. Finally, the glycolate oxidase, 
which catalyzes the oxidation of glycolate to glyoxylate, contains two 
subunits (GlcD and GlcE) that are homologous to SdhA, and the subunit 
GlcF that shares homology to SdhB and SdhEE [140]. These homologous 
relationships lead Jardim-Messeder et al to propose the classification of 
the “fumarate reductase superfamily” [85]. 

1.4. Re-evaluation of SDH/FRD current diversity 

The increase in the number of genomes available combined with the 
important role of SDH/FRDs within the metabolism of the three domains 
of life calls for a re-evaluation of its distribution and evolution. In this 
article, we analysed the taxonomic distribution of the different SDH/ 
FRD types and observed that with few exceptions, the different types are 
not confined to a specific taxonomic group. The phylogenetic and sim-
ilarity network analyses showed the existence of several prokaryotic 
events of membrane anchor replacements occurring within the history 
of these complexes, with eukaryotic diversity arising by the existence of 
isoforms and additional subunits that increase the complexity of the 
enzyme. Finally, the underlying analysis can serve as basis for selecting 
natural variants as candidates for future functional studies. 

2. Materials and methods 

2.1. Query dataset 

A thorough literature search allowed gathering information 
regarding microorganisms containing characterised or genomic re-
ported succinate dehydrogenases/fumarate reductase complexes 
(Table S1). Query sequences of succinate dehydrogenases and homolo-
gous enzymes sequences were retrieved from BRENDA (release 2020.2, 
[141]), KEGG (release 95.0, [142]) and UniProt [143] databases or from 
internal databases as in the case of heterodisulfide reductases and 
adenosine-5′-phosphosulfate reductases [144]. Protein complexes were 
checked for their completeness and a search for missing subunits was 
performed by BLASTing all queries against the genomes of the complex 
with missing subunit(s), using as cut-off identity of at least 70 %, query 
coverage of 50 % or higher and an E-value lower than 10− 10. Retrieved 
hits were further analysed using Pfam (PfamScan.pl version 1.5 [145]) 
and TMHMM (version 2.0 [146]). The results were analysed and se-
quences added to the query list if the Pfam domains and the number of 
predicted transmembrane helices matched the expected. In addition, the 
feature tables from the respective genomes were inspected to determine 
if the missing subunits were classified as “pseudogenes” and thus, absent 
from the proteomic assembly. This affected one case, in the genome of 
Sulfolobus acidocaldarius DSM 639. In total, 69 SDH and FRD complexes 
belonging to 59 organisms were gathered, spanning 10 bacterial phyla 
and three archaeal phyla. Queries included both succinate de-
hydrogenases and fumarate reductases complexes as well as epsilon-
proteobacterial methylmenaquinol:fumarate reductases from 
Campylobacter (C.) jejuni and Wolinella (W). succinogenes, sequences 
from homologous enzymes representatives from L-aspartate oxidase 
[137,147–150], thiol:fumarate reductase [139,151], anaerobic sn-glyc-
erol-3-phosphate dehydrogenase [138,152], glycolate oxidase 
[140,153,154], adenosine-5′-phosphosulfate reductase [155,156], het-
erodisulfide reductases HdrABC [156–158] and HdrDE [159]. In total, 
293 query sequences were used for further analysis (Table S1). In 
addition, eukaryotic SDH sequences from 41 representative (Table S2) 
were acquired from KEGG (release 95.0, [142]). 

2.2. Genomic dataset 

A subset of our in-house dataset of over 190,000 metagenomic as-
semblies (download from NCBI November 2019 with two Acidianus 
ambivalens assemblies added at a later date [144]) was created by 
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filtering genomic records based on previously mapped NCBI taxonomic 
information and genomic quality in terms of completeness and 
contamination calculated with the Rinke method [160]. For this study, 
all NCBI reference and representative genomes as well as genomes 
containing queries were kept. Moreover, to ensure the existence of at 
least one representative from each species, additional genomic records 
(one per species) were added given preference for complete genomes 
followed by higher quality assemblies. The finalized genomic dataset 
contained 35,017 (meta)genomic assemblies, from where 33,683 belong 
to 179 bacterial phyla and 1334 to 22 archaeal phyla (Table S3). 

2.3. Similarity analysis 

Similarity searches were performed using the reciprocal best blast hit 
approach (rBBH, [161]). The search was conducted using DIAMOND 
Blastp (v2.0.4.142) [162,163] in “ultra-sensitive” mode with “-k 0”. The 
first direction of rBBH consisted of blasting each protein from the ge-
nomes of the dataset against a database composed of all query sequences 
as one DIAMOND database using as cut-offs 25 % identity and an E-value 
lower than 10− 10. Copies were identified by Diamond BLASTing each 
genome against itself, and filtering the results for identity higher than 
70 %, E-value lower than 10− 10, and at least 70 % query coverage. 
Retrieved hits (including copies) were then blasted against a DIAMOND 
database of query genomes using as cut-offs 25 % identity and an E- 
value lower than 10− 8. The E-value cut-off for the second direction was 
increased to account for the larger size of the database, which could lead 
to increased E-values. The 201,016 unique reciprocal hits and their 
copies were retrieved from the genomes and first an all vs all BLAST was 
performed using NCBI BLASTP+ [164] and filtered for 25 % identity and 
10− 10 E-value followed by a global alignment using Needleall [165] 
(same identity cut-off). The rBBH relationships were clustered using 
Markov Chain Clustering (MCL, version 14–137, [166,167]) with an 
inflation parameter of 1.2. This value was chosen instead of the default 
2.0 to account for possible over-clustering artefacts which were 
encountered during test runs (data not shown). The cause of these ar-
tefacts was not established with certainty; however, it is possible that 
MCL algorithm is not currently adapted to work with large metagenomic 
data (over 270,000 hits), since this data often contains partial or mis-
assembled sequences that can introduced errors in the clustering pro-
cedure. Intercluster mean, median and maximum identities were 
calculated and analysed via hierarchical clustering and heatmaps 
plotted using R (R pheatmap package, version 1.0.12, [168,169], and R 
corrplot package, version 0.92, [170]). To reduce redundancy, clusters 
with over 1000 SDH/FRD sequences were reclustered in MCL (version 
14–137, [166,167]) using as cut-off a global identity of at least 90 %. A 
representative sequence per cluster was kept for further analysis. 

2.4. Functional annotations and syntenic rearrangements 

The rBBH sequences were functionally annotated using the NCBI 
Conserved Domain Batch SEARCH (abbreviated as CD SEARCH; CDD 
database, in automatic search mode with E-value lower than 0.01 as 
threshold, composition corrected scoring ON, maximum number of hits 
= 500, including retired sequences, standard results mode [171]. Se-
quences were labelled as fusions if two or more non-overlapping CD 
SEARCH domains characteristic of different subunits/proteins were 
found. Prediction of the number of transmembrane helices was per-
formed with TMHMM (version 2.0 [146]) and TMPred [172]. For a 
clearer differentiation between AprA and SdhA sequences, DiSCo was 
used [144]. In addition, KOfam (kofam_scan version 1.3.0, [142]; using 
HMMER version 3.2.1, hmmer.org) and Pfam (PfamScan.pl version 1.5, 
[145]) annotations were performed for all genomic records and filtered 
for hits of interest. Sequences with multiple significant KOs assignments 
were checked based on their CD SEARCH and Pfam annotations (where 
possible) since kofam_scan output does not include start and end posi-
tions of KOs assignments. 

Analysis of the syntenic arrangement of the retrieved sequences was 
performed with the feature table information using a window of two 
upstream and two downstream proteins in the neighbourhood of the 
proteins of interest (same chromosome or contig). Neighbour sequences 
not previously identified as rBBH were functionally annotated as above. 
The syntenic patterns of SDH subunits were analysed, and this infor-
mation used for the functional annotation of MCL clusters. 

2.5. Phylogenetic and network analyses 

Multiple sequence alignments of clusters containing SDH subunits 
were performed using ClustalOmega (version 1.2.4, [173]) with: “–max- 
guidetree-iterations=100 –max-hmm- iterations=100 –output-order-
=tree-order” as parameters. A structural alignment of SdhCF and SdhCB 
sequences was performed using Expresso mode of T-Coffee [174,175] 
and W. succinogenes structure, (PDB code: 2BS2) [176]. ClustalOmega 
alignments were trimmed using TrimAl (version 1.2, [177]) with a gap 
threshold of 0.05 and a minimum of 60 % of the positions in the original 
alignment conserved. Clusters containing sequences of the same sub-
units were pooled together and a joined multiple sequence alignment 
produced. Sequences in which SDH subunit fusions had been identified 
were manually split. In cases where the fusion involved additional do-
mains unrelated with the SDH/FRD complexes, these were trimmed 
from the alignment using information from the CD SEARCH domain 
assignments. Alignments of clusters containing transmembrane subunits 
were checked for the presence of the heme binding histidines and this 
information stored at each sequence level to aid in the classification into 
types. Clusters of type E and F membrane anchor subunits were kept 
separated due to lack of homology to the other membrane subunits. 
Type B membrane anchor sequences were split into “SdhC” and “SdhD” 
based on the number of helices predicted by TMHMM [2,146]. The 
alignment quality was assessed using information about the conserved 
catalytic and cofactor binding residues in SDH/FRD subunits retrieved 
from literature and further verified by analysing the available SDH/FRD 
structures using UCSF Chimera (version 1.14, [178]). Additional align-
ments were performed including eukaryotic sequences. 

The resulting alignments were used to reconstruct maximum likeli-
hood phylogenies in Iqtree (version 2.1.2 [179]) with 1000 ultrafast 
bootstraps [180] and best model selection “-m TEST” [181]). Phyloge-
netic reconstructions were rooted using the minimal ancestor deviation 
(MAD) method (version 2.22, [182]) with a modified script to keep 
bootstrap values (kindly provided by Giddy Landan; Newick files S01 
and S02, as well as their corresponding annotations S03 and S04, are 
provided in Supplementary information). Functional and taxonomic 
annotations were added to the phylogenies and the analyses performed 
in FigTree (version v.1.4.4, tree.bio.ed.ac.uk/software/figtree). Simi-
larity networks based on global identities of SdhC and SdhD were 
visualised in Cytoscape [183]. Eukaryotic SdhCC and SdhDC similarity 
networks were kept separate due to the absence of similarity above 30 % 
with prokaryotic enzymes. The global identity relationships were 
reduced by 70 % keeping one representative sequence per genus. 
Additionally, all relationships below 30 % were excluded from the 
networks. Similarity networks of SdhEE proteins were analysed together 
with HdrB sequences. 

2.6. Classification of SDH/FRD types 

SDH/FRD types were determined using a combinatory analysis of 
synteny, best hit relationships, global identity to queries with a defined 
type, number of histidines in the anchor module, phylogenetic and/or 
similarity network analysis. Syntenic complete complexes where clas-
sified based on the number and type of membrane subunits, taking into 
account the number of histidines present within the membrane anchor. 
For cases in which SDH/FRD catalytic subunits were non-syntenic or in 
which the membrane anchor(s) were not identified, the best reciprocal 
hit was inspected and a global identity matrix of the SDH/FRD subunit in 
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question was created and hierarchically clustered. Cases where a type 
could not be confidently determined were marked as “N.d.”. 

The distinction between SdhEE and HdrB proteins included analysis 
of the syntenic region for presence and/or absence of HdrA or HdrC 
proteins. First, If the catalytic subunits were found in the genome but not 
in synteny with the potential SdhEE sequence, it was checked first for 
presence of HdrA and HdrC. If those were absent, the sequence was 
labelled as SdhEE. In cases where the genome contained more than one 
HdrB sequence, the strategy consisted in checking the HdrB synteny 
with HdrAC subunits. In addition, these sequences were aligned with 
known HdrBs (e.g. from methanogens) and identified SdhEE subunits (e. 
g. from Acidianus ambivalens) and a global identity analysis with hier-
archical clustering performed to aid in the distinction of SdhEE and 
HdrB. If still no classification as SdhEE was possible, the “HdrB” anno-
tation was kept. The differentiation between SdhEE and SdhEE* was 
performed based on the absence of the SdhFE subunit within the 
complex. 

3. Results and discussion 

The combined analysis regarding the distribution and phylogenies of 
SDH/FRD and close homologues is described below. 

3.1. Distribution of SDH/FRD in prokaryotes 

3.1.1. MCL cluster composition 
The rBBH search for homologues identified 201,016 unique se-

quences (270,215 in total), with 87,278 sequences annotated as SDH/ 
FRD subunits. After filtering for 25 % identity, the global alignment of 
these sequences produced over 1.5 billion relationship pairs. MCL 
analysis provided 105 clusters (Table S4), 27 of them containing SDH/ 
FRD subunits, with the remaining containing other complexes used as 
queries. SDH/FRD sequences were identified in 77 % (26894) of ge-
nomes in the dataset, being absent from 8122. Most of these genomes are 
metagenomic assemblies, with different levels of completeness, so it is 
not clear whether these organisms have no SDH/FRD or if the assemblies 
are simply missing those sequences. Among the complete genomes 
devoid of SDH/FRD are several taxa known for having extremely 
reduced genomes [184–187]) such as Nanoarchaeota (8 out of 8), 
Nanohaloarchaeota (8/8), the DPANN group (132/134), and the bac-
terial Tenericutes group (248/248). In addition, SDH/FRD were also 
absent within novel candidate phyla and in some genomes from phyla in 
which full SDH/FRD complexes were identified. 

After functional annotation with KEGG and PFAM and inspection of 
the number of histidines in the membrane anchor module, the compo-
sition of clusters became clearer (Table S4). While SdhA and SdhB se-
quences, irrespectively of the type, were present in three and four 
different clusters, respectively, the membrane anchor subunits were 
grouped into a higher number of clusters: 12 in the case of SdhC and 8 in 
the case of SdhD. Membrane anchor subunits of type C are found in four 
of these clusters, and type B found in five. Type A membrane subunits 
are spread among 8 clusters, while only two clusters have type D se-
quences, being type F and E sequences each in separate clusters. The 
multitude of clusters for membrane anchor sequences of types A, B and C 
hints at the potential existence of subtypes within these groups. Inter-
estingly, one cluster contained fusion sequences of SdhC and SdhD 
subunits, distinct from the canonical SdhCB, and containing 7 predicted 
transmembrane helices. These sequences were affiliated with the 
Chloroflexi phylum indicating a lineage specific fusion event. The non- 
canonical membrane subunits of amphipathic nature present in SdhEE 
(e.g. characterised Acidianus ambivalens SdhEE [89] and C. jejuni MfrE 
[131]) are found in a cluster containing also HdrB proteins. Within the 
largest cluster, in addition to SdhA sequences, also TfrAs and other 
closely related sequences which could not have been differentiated from 
SdhA by functional annotations are present. 

Besides homologues already present in the query set, additional 

homologues of SdhA were identified such as urocanate reductase (UrdA) 
[188], tricarballylate dehydrogenase (CobZ/TcuA) [189], alkyldihy-
droxyacetonephosphate synthase (AgpS) [190], 3-oxo-5alpha-steroid 4- 
dehydrogenase (TesI) [191], D-lactate dehydrogenase (Dld) [192], and 
3-oxosteroid 1-dehydrogenase (KstD) [193]. Homologues of SdhB 
include several ferredoxin and HdrC2 proteins, both of which contain 
FeS clusters. In the case of SdhEE, besides HdrB also LldE, a Cysteine-rich 
domain containing protein involved in lactate utilization, was 
identified. 

3.1.2. Taxonomic distribution per SDH/FRD type 
The classification of the sequences per type, shown in Fig. 2 and S1 

allowed to analyse the overall distribution of complexes per type. In this 
dataset, 31,944 complete SDH/FRDs complexes and 2239 incomplete 
(lacking at least one subunit) were identified (Table S5). Inspection of 
the existence of pseudogenes within the genomic assemblies revealed 
that in 725 cases, the identification of incomplete complexes might be 
due to assembly artefacts. However, the remaining 1514 cases open the 
possibility of the existence of novel modular architectures within this 
family and pinpoints enzymes to be biochemically characterised. In the 
case of 2002 sequences, no type classification could be attributed (see 
“Materials and methods”). The taxonomic distribution of each type is 
described in detail below. 

3.1.2.1. Type A. Type A enzymes are the taxonomically most diverse 
type and include the characterised complexes from Mycobacterium 
smegmatis [134], Halobacterium salinarum [44,71,194], Natronomonas 
pharaonis [71,195]), Rhodobacter sphaeroides [196], Micrococcus luteus 
[46], Thermus thermophilus [86], and Thermoplasma acidophilum 
[71,197]. These complexes are widespread in both Archaea and Bacte-
ria, being present in 8 archaeal and 40 bacterial phyla. In Archaea, type 
A SDH complexes were identified in the majority of Archaeoglobi (8/10 
genomes), Halobacteria (over 90 % of 388 genomes present in the 
dataset), Korarchaeota (five out of five genomes), and Thaumarchaeota 
(83 % of 88 genomes). SDH complexes of this type are also detected in at 
least 40 % of metagenomic assemblies affiliated with Candidatus 
Heimdallarchaeota, Candidatus Marsarchaeota, and Crenarchaeota, 
specifically within Thermoprotei. Interestingly, in Acidianus ambivalens 
genomes, besides the canonical type E experimentally characterised by 
Lemos et al [89], an incomplete SdhBCDA complex was identified. In-
spection of the surrounding genes did not allow the identification of 
other proteins that could replace the flavin subunit. 

In Bacteria, this type is widespread in several phyla such as in 
Actinobacteria (66 % of 5489 genomes), Deinococcus-Thermus (over 90 
% of 95 genomes), Deferribacteres (11/11 genomes), Rhodothermaeota 
(6/11 genomes) and Candidatus phyla (C. Aminicenantes (8/13 ge-
nomes), C. Tectomicrobia (6/6 genomes), C. Division Zixibacteria (9/18 
genomes), C. Kryptonia (four out of four genomes), and C. Mar-
inimicrobia (6/12 genomes)). In addition, type A SDH complexes are 
scarcely present in 30 bacterial additional phyla. Of note, the short 
length of 32 amino acids of the proposed SdhFA subunit present in 
M. smegmatis prevents this peptide from getting accurate BLAST hits, 
therefore it was excluded from the analysis. Moreover, this protein is not 
in synteny with the complex but 4038 genes downstream in one direc-
tion and 2773 genes upstream in the other. 

The existence of different SDH/FRD types within closely related 
strains was also observed. While in this analysis, in Rhodothermus mar-
inus DSM 4252 genome an SDH of type A was identified, the charac-
terised enzyme from Rhodothermus marinus PRQ32B albine strain 
belongs to type B ( [75] and Miguel Teixeira personal communication). 
It would be of interest to compare the position within the phylogenies of 
these two complexes, but the lack of genomic records for strain PRQ32B 
impairs this analysis. 

3.1.2.2. Type B. Type B complexes include the characterised complexes 
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from Bacillus subtilis [30,50,54,55,59–61,78], Bacillus cereus [90], Bac-
teroides fragilis [91], Bacteroides thetaiotaomicron [92], Helicobacter pylori 
and Campylobacter jejuni [93], Desulfovibrio gigas [94], Geobacter sulfur-
reducens [95], and Wolinella succinogenes [74,96,176]. This type is 
widespread among bacterial lineages being present in a total of 49 
bacterial phyla. Type B SDH/FRD complexes were identified in the 
majority of Acidobacteria (70 % of 130 genomes), Bacteroidetes (96 % 
of 2769 genomes), Balneolaeota (17/17 genomes), Chlorobi (62 % of 34 
genomes), Ignavibacteriae (88 % of 70 genomes), Fibrobacteres (93 % of 
44 genomes), Candidatus Tectomicrobia (6/6 genomes), Chlamydiae 
(72 % of 65 genomes), Planctomycetes (64 % of 245 genomes), Verru-
comicrobia (89 % of 217 genomes), Actinobacteria (~50 % of 5489 
genomes), Armatimonadetes (55 % of 33 genomes), and Bacilli (66 % of 
3143 genomes). Interestingly, in Proteobacteria, SDH/FRDs of type B 
are widely distributed in some proteobacterial classes (5/5 genomes of 
Candidatus Lambdaproteobacteria, 64 % of 672 genomes of Deltapro-
teobacteria, 84 % of 431 Epsilonproteobacteria genomes, and 88 % of 68 
Oligoflexia genomes) while being very scarce or entirely absent in 
others. In Cyanobacteria, SDH/FRD complexes of this type are present in 
only 15 % of the 556 metagenomic assemblies. However, type B are 
almost entirely absent from Archaea, with the exception of a few met-
agenomes from Candidatus Thorarchaeota (one out of five, only SdhAB 
and SdhCB subunits identified), Methanobacteria (four out of 66 ge-
nomes), and unclassified Euryarchaeota (one of 73 genomes). 

3.1.2.3. Types C and D. Type C enzymes include the well-studied E. coli 
SDH [10,15,37,51,97–104] and mitochondrial enzymes 
[82,111,112,198]. Besides eukaryotes, these complexes are mainly 
present in Proteobacteria (Alphaproteobacteria, Betaproteobacteria, 
and Gammaproteobacteria) being also found within 20 % of unclassified 
bacterial genomes. Type D, to which E. coli FRD belongs 
[20,24,47,104–106], has a restricted taxonomic distribution when 
compared to type A or B. In Bacteria, with exception of Gammaproteo-
bacteria where it is present in 30 % of 5777 metagenomic assemblies, 
type D is scarcely found across 17 phyla, such as Actinobacteria, Acid-
obacteria, Calditrichaeota, Bacteroidetes, Candidatus Marinimicrobia, 
Gemmatimonadetes, and Nitrospirae. In this analysis 11 full archaeal 
type D complexes were identified, all from unclassified metagenomes 
(four out of 73 unclassified Euryarchaeota genomes, three out of 8 un-
classified Crenarchaeota genomes, and four out of 49 unclassified 
Archaea genomes). Thus, it is not clear if type D is truly present in 
Archaea, potentially due to recent lateral gene transfer events, or these 
results are a consequence of assembly artefacts. 

3.1.2.4. Type E. Canonical type E complexes (i.e. with two amphipathic 
membrane anchor subunits SdhEE and SdhFE that include characterised 
complexes from A. ambivalens [71,89], S. acidocaldarius [71,130] and 
S. tokodaii [71,199]) were identified only in Archaea, in the Thermo-
protei class of Crenarchaeota (~32 % of 117 genomes), the 

(caption on next column) 

Fig. 2. – Taxonomic distribution of SDH/FRD types across 35000 metagenomic 
records. Proteins for which the type classification was not possible are grouped 
in the “N.d.” column. The shade of the the ellipse and its size indicate the 
percentage of genome in the taxon having a complex of a certain structural type 
(The ellipse outside of the heatmap represents 100 %). White indicates absence 
of a type in a lineage. Genomes are grouped by phylum or class. Rows con-
taining taxa without a supergroup affiliation are numbered: group “1” contains 
Candidatus Hydrothermarchaeota; group “2” contains unclassified Archaea; 
group “3” contains Acidobacteria, Aquificae, Caldiserica, Candidatus Cryoser-
icota, Calditrichaeota, Chrysiogenetes, Coprothermobacterota, Deferribacteres, 
Dictyoglomi, and Elusimicrobia. Group “4” contains Fusobacteria, Candidatus 
Tectomicrobia, Nitrospinae, and Nitrospirae. Group “5” contains Spirochaetes 
and Synergistetes. Group “6” contains Thermodesulfobacteria and Thermoto-
gae. Bacterial candidate phyla were moved to a Fig. S1, for simplicity. 
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Thermoplasmata class of Euryarchaeota (~14 % of 58 genomes), and in 
one unclassified Euryarchaeota genome. Interestingly, a variation of 
type E SDH architecture, containing the SdhEE subunit but lacking SdhFE 
(in here denoted as type E*, with characterised representatives from 
C. jejuni MFR [131,200] and Synechocystis sp. SDH [201]), were found in 
Bacteria. This type was found in 15 bacterial phyla, predominantly in 
Aquificae (50 % of 40 genomes, excluding soluble NADH-dependent 
fumarate reductases [202]), Chlorobi (74 % of 34 genomes), Nitro-
spinae (74 % of 19 genomes), Cyanobacteria (62 % of 556 genomes), 
and Negativicutes (45 % of 189 genomes). 

3.1.2.5. Type F. The newly discovered type F [88,133] was thought to 
be exclusively present in Actinobacteria. In our analysis, this complex 
was identified in four archaeal lineages and 28 bacterial lineages. In 
Archaea, it is mostly present in Candidatus Poseidoniia (80 % of 15 
metagenomic assemblies), and Euryarchaeota (14 % of 58 Thermo-
plasmata and 17 % of 73 unclassified genomes). In Bacteria, this type 
was predominantly detected in at least 30 % of metagenomic assemblies 
affiliated with Actinobacteria, Acidobacteria, Gemmatimonadetes, 
Candidate Division NC10 and Candidatus Rokubacteria. Of note, in the 
multiple sequence alignment of SdhCF sequences, four strictly conserved 
histidines were identified. This type was reported not to contain heme 
cofactors and has been only studied in one organism so far [88,133]. 
According to the recently resolved Type F M. smegmatis X-ray crystal-
lographic structure, two of these histidines (His155 and His240 in 
M. smegmatis numbering) bind a Rieske-type 2Fe–2S cluster [88]. The 
role of the two remaining conserved histidines remains to be elucidated. 
The lack of heme-binding histidines within this family was investigated 
by performing a structural alignment of SdhCF and SdhCB proteins using 
the W. succinogenes structure as template [176]. The resulting alignment 
has shown that the type F conserved histidines do not align with the 
heme-binding histidines of SdhCB, being located at a different structural 
position and therefore unlikely to be related relics of the histidine li-
gands of the hemes present in other types. 

3.1.2.6. Thiol:Fumarate reductases (TFR) and “N.d” sequences. Thiol: 
fumarate reductases, first discovered in M. marburgensis str. Marburg 
[49,139], are enzymes that in methanogenic archaea perform the con-
version of fumarate to succinate using Coenzyme M – Coenzyme B as an 
electron donor [139]. These soluble enzymes contain a flavin subunit 
(TfrA), and an iron‑sulfur subunit with a CCG domain (TfrB). Due to the 
closer homologous relationship of the flavin, iron‑sulfur and CCG sub-
units of SDH/FRD, thiol:fumarate reductases are also included in this 
analysis. Soluble thiol:fumarate reductases were identified predomi-
nantly in Archaea (four phyla) and scarcely identified within 9 bacterial 
phyla. In Archaea, TFR complexes mainly occur in Euryarchaeota 
(methanogenic lineages, but also one Archaeoglobi metagenome), as 
well as in Candidatus Thorarchaeota and Candidatus Bathyarchaeota. In 
Bacteria, this complex is only found in 19 metagenomic assemblies, most 
of them belonging to Candidatus Roizmanbacteria and Deltaproteobac-
teria. Although Coenzyme M is present in some bacteria [203], to our 
knowledge, Coenzyme B was not detected in Archaeoglobi or any of the 
bacterial lineages, therefore the cases identified in these lineages either 
use a different interaction partner or are a result of contamination or 
misassembly artefacts. As for the sequences identified as TFR in Thor-
archaeota and Bathyarchaeota, this computational analysis cannot tell 
whether or not they are true TFRs or close homologues, although in 
some of these lineages, at least the Wood-Ljungdahl pathway was 
identified [204–207]. 

In addition to complexes of types A to F and thiol:fumarate re-
ductases, there are 1780 SdhA or SdhB sequences for which no type 
could be assigned. For such cases, no membrane subunits were identi-
fied. Many of such SdhAB complexes are close to type A, B or E/E* by 
both global identity and phylogenetic analysis (see below), and often 
were found in genomes that also contain a full SDH/FRD complex of an 

identified type. The cases without type classification were found in 8 
archaeal and 30 bacterial phyla. 

3.1.3. Phylogenetic analysis of SdhA 
In the joined maximum likelihood phylogenetic reconstruction of 

SdhA (Figs. 3 and S2), well supported monophyletic clades for sequences 
of types C, D, canonical E, and F are observed, while sequences of types A 
and E* are intercalated. Such intercalated nature of type A clades, as 
well as differences in sequence composition of the enzymes within these 
clades (Data not shown), hint at the existence of possible subgroups 
within this type. In this reconstruction, at least four type A clades can be 
distinguished, one stemming out of the largest TFR clade (see below) 
and the remaining intercalated with E/E* enzymes. The archaeal SdhAA 
sequences are present in three of the four clades, one containing 
exclusively Halobacterial sequences, other retrieving the grouping 
observed in [3], and the Heimdallarchaeal sequences are grouped in a 
clade containing type A bacterial proteins. The remaining type A clade 
closer to the large TFR clade is composed mainly of proteobacterial se-
quences and has low bootstrap support (Fig. 3). Of note, this SdhAA 
clade has its respective iron‑sulfur center subunit located within the 
large bacterial/Heimdallarchaeal SdhBA clade (Fig. 4). A closer inspec-
tion of the SdhAA sequences revealed that the ones closer to the TFR 
clade are missing conserved two residues in the vicinity of the FAD 
cofactor (H46 and T255 M. smegmagtis numbering). Besides this, with 
exception of random insertions, no other major difference was identified 
between the sequences. 

The existence of distinct clades of type E*, is in agreement with 
literature reports [131,200,201] that suggest that this type contains 
functionally diverse enzymes. In contrast, canonical type E sequences 
constitute a single well-supported clade containing only archaeal 
sequences. 

In this phylogeny, TFR sequences are found in three non- 
monophyletic clades. The larger TFR clade, closer to the root, contains 
97 proteins associated with various taxa. The remaining clades contain 
proteins from archaeal metagenomic assemblies, one composed of five 
proteins affiliated with unclassified Euryarchaeota (located between 
canonical type E and the archaeal type A clade), and the last, located 
next to the cyanobacterial type E* clade, contains four proteins 
belonging to Candidatus Bathyarchaeota, as well as truncated proteins 
belonging to Deltaproteobacteria (1) and Methanobacteria (1). These 
two last TFR clades might correspond to specific adaptations occurring 
within these phyla or be a result of assembly artefacts, since the fused 
subunit characteristic of TFR was also identified. Moreover, SdhAF 
proteins are grouped in a highly supported monophyletic clade 
branching close to TfrA proteins, and might represent a recent adapta-
tion, with a membrane anchor replacement occurring within bacterial 
organisms. Within type F clade, archaeal sequences are present in two 
subclades (one with C. Poseidoniia, C. Heimdallarchaeota, and unclas-
sified Euryarchaeota sequences, and the other with Thermoplasmata 
proteins). This is an indication of two potential interdomain lateral gene 
transfer events. 

In the SdhA phylogeny, type B sequences are monophyletically 
organized, separated in at least three distinct groups and were initially 
separated by the root by MAD. A closer inspection of the MAD rooting 
results showed that this is an ambiguous root and that the support for the 
branch separating B type enzymes from the remaining is equally valid 
(Supplementary Figs. S2 and S3). This separation of type B into three 
groups is in agreement with what was previously observed [3,95,208], 
and may be the result of later enzymatic specializations. On one side of 
the root, two type B groups contain sequences from SDH or bifunctional 
complexes (Subgroup II and III in Table S6), while the third group, 
located on the other side of the root, contains FRD or bifunctional 
complexes (Subgroup I in Table S6). The distinction of the functional 
clades is supported by the CD SEARCH assignments which classifies 
subgroup I as fumarate reductase and subgroups II and III as succinate 
dehydrogenases/fumarate reductases. Although this separation is also 
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partially supported by the few available data on characterised type B 
enzymes and their in vivo wild-type predicted function 
[77,78,90–96,208–211], the lack of experimental characterization of 
other taxonomically diverse enzymes refrains us from putting forward 
any additional speculations regarding the enzymes' in vivo function. Of 
note, type B enzymes are not taxonomically organized, with both pro-
karyotic domains represented in each of the three clades (Figs. 3 and 4, 
red and black branches). Additionally, one type B clade contains pro-
teins from Clostridia and Methanobacteria that have a corresponding 
subunit B but are devoid of anchor subunits. Since some of these se-
quences are from complete genomes of cultivated organisms, this could 
be a case involving the recruitment of a common domain to perform a 
different function, or correspond to a soluble form of SDH/FRD enzyme, 
closely related to the membrane-anchored type B complex. Type B is not 
only placed as a basal type by MAD rooting in phylogeny of both SdhA 
and SdhB, with TFRs as basal in the sister clade of type B enzymes, but 
also it has the lowest mean/median global identity to other types 
(Table S7). 

NadB sequences and/or SdhA protein homologues, for which no 
other SDH/FRD subunits were found (in grey in Fig. 3) form two large 

clades between type F and TFR clades. To our knowledge, none of these 
proteins, mainly present within Actinobacteria and Alphaproteobac-
teria, are so far characterised. 

Although the phylogeny of catalytic subunits is discussed, it is 
observed that types with less than two hemes attached to the membrane 
subunits (C and D) stem out of distinct type A clades, suggesting that 
each of these types originated independently through the process of 
heme loss and that this signal is retained also at the level of the cyto-
plasmic subunits. This is also supported by the mean and median global 
identities between SdhA subunits of the different types (Table S7), 
where it can be seen that SdhAC is more similar to SdhAA than to SdhAD, 
further supporting the relatedness of the complexes belonging to type A 
and type C. Although type D is equally similar by global identity to types 
C and A, it forms highly supported clades within the SdhA and SdhB 
phylogenies. Interestingly, SdhAA and SdhAE are also similar (42.9 % 
mean global identity). In the case of type C, two prokaryotic subclades 
hint at the existence of two potential subgroups. 

All of eukaryotic SdhAEUKC sequences form a monophyletic well- 
supported clade within type C enzymes, having Alphaproteobacteria 
as basal. This is also supported by mean/median global identities (SdhAC 

Fig. 3. – Maximum-likelihood reconstruction (LG amino acid substitution matrix four discrete gamma categories model; LG + G4) of SdhA proteins. Phylogenies 
were rooted using the minimal ancestor deviation method [182]. Black circles indicate significant ultrafast bootstrap (BT) support above 95. All other node support 
values are omitted for simplicity. The scale bar indicates the number of substitutions per site. Type A is coloured in orange, type B in green, type C in yellow, type D in 
light blue, type E/E* in indigo, type F in purple, TFR sequences are coloured in red while the clades of undetermined SDH/FRD type or homologous complexes are 
coloured in grey. Each clade containing characterised complexes is labelled with the corresponding organisms. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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vs SdhAEUKC have 51 % mean global identity; Table S8 and Fig. S5). 
Interestingly, with exception of Drosophila melanogaster sequences, all 
other isoforms are sisters of each other, some of them being truncated 
forms of the enzyme. 

3.1.4. Phylogenetic analysis of SdhB 
The overall topology of the joined maximum likelihood phylogenetic 

reconstruction of SdhB (Figs. 4 and S3) is similar to the one found in 
SdhA. In this phylogenetic reconstruction, type B subclades were not 
separated by the root by MAD (but still forming three subgroups). 
Further explanation of the MAD root separation is available in Supple-
mentary information. 

In comparison to the SdhAA,E phylogeny, the SdhBA,E sequences are 
organized in more distinct clades with a separation between E and E*. 
This is also observed in the intertype mean global identities between 
type SdhBA and SdhBE (intertype mean global identity of 26.6 %) and 
SdhAA and SdhAE (intertype mean global identity of 42.9 %). A possible 
explanation relies on the fact that the SdhB subunit is in contact with the 

membrane anchor module that differs significantly between these types 
(amphipathic nature of SdhEE and the transmembrane nature of 
SdhCDA). 

The topology of SdhBA clades differs slightly from what is observed 
in SdhAA phylogeny. The low-supported clade, consisting mainly of 
proteobacterial sequences that in SdhA phylogeny was closer to TFRs, is 
found together with other bacterial and Heimdallarchaeal SdhBA se-
quences. However, there is a small well-supported clade basal on one 
side of the root, consisting of some Deltaproteobacterial SdhBA se-
quences, with the corresponding SdhAA subunits found in a bacterial/ 
Heimdallarchaeal clade. One explanation for different placement of the 
SdhBA subunit in these cases could be the sequence differences necessary 
to accommodate a fused transmembrane anchor with 7 helices, which is 
found not as rBBH but as a syntenic neighbour in these genomes. A 
similar seven helix transmembrane subunit is also found in some of the 
Chloroflexi (as previously mentioned). These complexes are in here 
denoted as type A*. 

In this phylogeny, the eukaryotic sequences are basal to a subclade of 

Fig. 4. – Maximum-likelihood reconstruction (LG amino acid substitution matrix four discrete gamma categories model; LG + G4) of SdhB proteins. Phylogenies 
were rooted using the minimal ancestor deviation method [182]. Black circles indicate significant ultrafast bootstrap (BT) support above 95. All other node support 
values are omitted for simplicity. The scale bar indicates the number of substitutions per site. Type A is coloured in orange, type B in green, type C in yellow, type D in 
light blue, type E/E* in indigo, type F in purple, TFR sequences are coloured in red while the clades of undetermined SDH/FRD type or homologous complexes are 
coloured in grey. Each clade containing characterised complexes is labelled with the corresponding organisms. The interrupted branch contains two MvhD sequences 
from Candidatus Bathyarchaeota and Chloroflexi. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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type C including Alphaproteobacteria, opposed to what is observed in 
SdhA phylogeny. The mean global identity between SdhBC and 
SdhBEUKC is of 43.8 % (Table S8 and Fig. S6). Interestingly, the observed 
lower identity between plants and the remaining eukaryotic sequences 
used in this study (Figs. S4 and S5) is in both phylogenies translated by 
their basal position within the eukaryotic clade. 

3.1.5. Similarity network analysis of SdhC and SdhD 
Due to the low sequence conservation between the membrane sub-

units of the different types and their short sequence length (~100 amino 
acids after trimming), these proteins were analysed in terms of similarity 
networks (Fig. S6 and Fig. S7). Networks have the advantage of allowing 
several levels of annotations for each sequence (node), such as SDH/FRD 
type, but have the disadvantage of losing the time connection [212]. 

In these networks, type B membrane subunits are separated in three 
subclusters corresponding to the three subgroups previously described 
for this type. The Chloroflexi and Deltaproteobacteria fusion membrane 
anchors of type A*, coloured in dark orange, are separated from the 
remaining sequences forming their own cluster. This could be due to 
their fused nature, longer sequence length, and the number of predicted 
helices (7 vs 5 helices in types B and F, and three helices in other types). 
By global identity analysis of the catalytic subunits, these fusions are 
closest to the type A complex. 

As in type B, the membrane anchors of type A complexes form three 
or four clusters, following the overall clade organization found in the 
phylogenetic reconstructions of SdhA/FrdA and SdhB/FrdB. As 
observed in [3], archaeal sequences from Thermoplasmata, Thermo-
protei, Archaeoglobi and Thaumarchaeota tend to cluster together, 
indicating that these proteins could constitute a distinct subgroup. The 
remaining archaeal proteins, belonging to Heimdallarchaeota and Hal-
obacteria, are grouped within bacterial enzymes both in the phyloge-
netic reconstructions as well as in the network analyses. This could be an 
evidence for recent lateral gene transfer events within these lineages as 
reported for Halobacteria [213,214]. Moreover, while the membrane 
anchors of types D and F form single clusters in both networks, type C 
sequences are separated into two tightly connected subclusters, one 
composed mostly of Alphaproteobacteria and Gammaproteobacteria, 
and the other mostly of Betaproteobacteria and Gammaproteobacteria. 
This is in agreement with the phylogenetic reconstructions of the cyto-
plasmic subunits where two type C clades are also observed. 

Eukaryotic SdhCEUKC and SdhDEUKC subunits show very low global 
identity (below 30 %, Table S8) to their prokaryotic counterparts, and 
therefore were plotted separately (Figs. S8 and S9). It can be seen that 
animal and fungal subunits are more similar to each other, since they 
form a well-connected cluster, while plants separately form several 
disconnected clusters, which is likely due to missing helices in Sdh3 and 
Sdh4 of plants. Due to the low sequence identity between trans-
membrane helices, it is not possible at this point to infer if some of the 
additional subunits of plants are the result of a fission event. Protist 
SdhCEUKCs are more connected to animal and fungal subunits, than their 
corresponding SdhDEUKCs. 

Overall, the separation of the membrane sequences into subgroups 
correlates with the clades shown in the joined phylogenetic re-
constructions of both catalytic subunits and can be further observed in 
the similarity networks, indicating a joined evolution of the subunits of 
the complexes. 

3.2. Evolutionary considerations 

The evolution of succinate dehydrogenases and their closest homo-
logues fumarate reductases has implications for the evolution of pro-
karyotic diversity in terms of both energy and carbon metabolisms. 
Moreover, it cannot be dissociated from the evolution of the modular 
blocks that form each one of its subunits and their respective cofactor 
content [215]. Based on the modular nature of the different types alone, 
a parsimonious explanation for the evolution of these complexes would 

be an early separation of types A, B, C and D from TFR and type E/E*, 
with type F being a more recent innovation. However, we have observed 
trends in the evolution and diversity of the single subunits which suggest 
a more intricate evolution, with multiple events of membrane anchor 
replacements. 

According to the phylogenetic reconstructions of the catalytic sub-
units A and B, there is a clear separation between type B enzymes and all 
of the remaining enzymatic complexes in here addressed. On the other 
side of the phylogeny, the basal clade contains the large group of TFR 
sequences, Type F and NadB or homologous proteins in which no 
membrane attachment was identified. Only after, sequences with the 
same type of membrane attachment as B type (SdhA, C and D) start to 
emerge. One possible interpretation would be the ancestry of type B over 
the remaining types (Table S7). In this category are included bifunc-
tional enzymes able to catalyse both reactions as well ones, specialized 
in one of the two reactions. The existence of different membrane at-
tachments in basal branches of both sides of the root argues in favour of 
later membrane anchor attachments, with both sides of the phylogeny 
sharing the cytosolic module. With this in mind, a scenario for the 

Fig. 5. - Proposed scenario for the evolution of the SDH/FRD family. SdhA is 
coloured in green, SdhB in purple, SdhC in pastel pink, and SdhD in light blue. 
SdhEE and SdhFE are coloured in grey. SdhCF is represented in a darker blue to 
indicate lack of homology to canonical SdhCs. Additional non-homologous 
subunits of NADH-FRD are represented by three black ellipses. Cofactors and 
numbers of membrane helices are indicated as described in Fig. 1. Complex X 
indicates the soluble primordial module. Solid arrows indicate the direction of 
evolution of the types, while dotted arrows indicate an addition or a loss (based 
on the direction of the arrow) of a domain/cofactor. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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evolution of this large family was elaborated (Fig. 5). 
In this scenario, and considering the phylogenetic reconstructions 

topologies also observed in other reconstructions (clades of types A and 
B in [3], type B SDH and FRD clade separation in [208], three subclades 
in [95]), the first event would have been an ancient duplication of the 
FAD and iron‑sulfur subunits, not yet associated with membrane an-
chors, that had undergone parallel evolution to give rise to type B on one 
hand, and TFR and the remaining SDH/FRD structural types on the other 
hand. 

If any of the membrane counterparts would already exist, then they 
would have been lost and regained several times. Moreover, this 
modular block organization composed of a FAD and an iron‑sulfur 
subunit is observed in many other homologous complexes not addressed 
in here, such as the sn-glycerol-3-phosphate dehydrogenase (two sub-
units homologous to SdhA and SdhB [85,138], Apr reductase (one 
subunit homologous to SdhA and a second subunit containing 
iron‑sulfur centers [85]), further supporting the joined evolution of the 
SDH/FRD soluble modules with the later attachment to the membrane 
[3,95,208,216,217]. The most likely function of the primordial enzymes 
would have been the reduction of fumarate for biosynthesis purposes. 

Early in the evolution of this complex, the TFR branch recruited a 
CCG domain, homologous to the one present in heterodisulfide reduc-
tase subunit B, that in TFR was later fused with the iron‑sulfur subunit. 
The HdrB domain, is a modular part of the HdrABC complex that is 
highly spread within anaerobic prokaryotes [218,219] but also present 
in aerobic and facultative aerobic organisms such as Cyanobacteria and 
Sulfolobales [144,219]. After the differentiation of TFRs, the CCG 
domain would have been replaced by the transmembrane anchor pre-
sent in type A enzymes. In Archaea, a three subunit module composed of 
the soluble catalytic subunits and an amphipathic CCG domain con-
taining one iron‑sulfur center, would have recruited an additional 
membrane subunit (SdhFE), giving rise to type E enzymes. 

The intercalated nature of type A, type E and type E* as well as the 
presence of a type A clade close to TFRs suggests several independent 
associations with membrane anchors, followed by functional speciali-
zations, as in the case of MFR and the soluble Aquificae NADH- 
dependent fumarate reductase [202]. 

In this scenario, and as supported by phylogenetic analysis, type F 
would have been the result of a newer association with its specific 
membrane anchor, probably adapted to Actinobacterial polyketide 
quinones [133]. Type C and type D would have independently evolved 
from type A enzymes by losing one or two hemes respectively. Eu-
karyotes would have acquired SDH from the mitochondrial ancestor that 
currently is thought to be of Alphaproteobacterial origin. 

The other side of the root only contains type B enzymes that evolved 
from a duplication of the primordial module. In this case, the same 
membrane anchor recruited by type A would have been recruited also by 
type B enzymes within bacteria. Through time, several events of inter-
domain gene transfers would have occurred, with the gain of type B 
enzymes within several archaeal species, belonging to two phyla (Eur-
yarchaeota and Candidatus Thorarchaeota). Due to the small size and 
functional characteristic of the transmembrane anchor module, it is not 
clear at this point, if the primordial module, would consist of one or two 
subunits. Since fusions tend to be more frequent than fissions [220], and 
type B taxonomic distribution is narrowed than that of type A, Occam's 
razor favours the former over the later hypothesis. 

An idea, that can perhaps be put forward here, is that modular blocks 
that were reused more often through time and are part of larger protein 
families might be older than the ones less frequently used in biological 
networks, or in particular, in energy conserving electron transport 
chains. Of course, there will be exceptions, as in the case of the well 
conserved ATP synthase [221], but this trend might be valid for other 
modules such as for instance, iron‑sulfur centers [222], or some en-
zymes belonging to the large family of Moco-enzymes [215]. Regarding 
the full SDH/FRD complex, its place in the major events in prokaryotic 
evolution was, so far, not clear. In the last years, laboratory experiments 

have achieved the synthesis of several intermediates of the TCA cycle, 
from where fumarate and succinate were present [216], which would be 
consistent with the existence of this substrate early in evolution. In 
addition, although the SDH/FRD reaction is not part of the 402 reactions 
of the biosynthetic core that trace to the last universal common ancestor 
[217], both fumarate and succinate are part of the metabolic network, so 
is the reaction nowadays catalyzed by the soluble version of NADH- 
fumarate reductase. In fact, the calculated deltaG of the reaction 
under alkaline vent conditions (− 65.4 kJ⋅mol− 1) [217], one of the 
possible scenarios for the habitat of our last common ancestor 
[223–225] favours the conversion of fumarate to succinate in the 
reductive direction. However, the lack of a clear archaeal and bacterial 
separation in any of the protein types, as seen in the SdhA and SdhB 
phylogenies, might be an indication of a later event of membrane 
attachment giving rise to the full complex after the diversification of 
both prokaryotic domains. 

With the attachment to the membrane, which occurred indepen-
dently and many times, the complex became part of the anaerobic 
electron transport chains, and microorganisms were able to optimize 
their ATP production. Since the oxidation of succinate to fumarate de-
pends on high potential electron acceptors [226], specialized SDHs only 
evolved at a later time, with the increase in oxygenation levels of the 
atmosphere [227]. These findings show a disconnection between the 
existing structural classification and the evolution of the modular 
structure of the complexes, partially contradicting the view established 
by Hägerhäll and Hederstedt paper [136], which hypothesized that type 
D resulted through the heme loss from type C, and type B resulted from 
fusion of anchor subunits present in type A. 

4. Conclusions 

The conversion of succinate to fumarate (and vice versa) is highly 
conserved among the three domains of life: Archaea, Bacteria, and 
Eukarya [2,3,85]. These enzymes participate in both respiration and 
fermentation based on the organism and the environment it inhabits 
[2,4,5]. The comparative genomic analysis of this superfamily across 
35,000 genomic assemblies expanded the current taxonomic distribu-
tion of several of the types complex in prokaryotes and allowed the 
potential identification of novel subtypes, to be further experimentally 
characterised. 

The combined analysis of the phylogenetic reconstruction and sim-
ilarity networks allowed the elaboration of a scenario in which a pri-
mordial soluble module, composed of the common cytoplasmic 
subunits, underwent several independent events of membrane attach-
ments, replacements, fusions and environmental adaptations to give rise 
to the current taxonomic distribution. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bbabio.2022.148916. 
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[26] S.P.J. Albracht, G. Unden, A. Kröger, Iron-Sulphur clusters in fumarate reductase 
from vibrio succinogenes, Biochim. Biophys. Acta BBA - Enzymol. 661 (1981) 
295–302, https://doi.org/10.1016/0005-2744(81)90018-8. 

[27] J.J. Burke, J.N. Siedow, D.E. Moreland, Succinate dehydrogenase 1: a partial 
purification from mung bean hypocotyls and soybean cotyledons, Plant Physiol. 
70 (1982) 1577–1581, https://doi.org/10.1104/pp.70.6.1577. 
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[122] A. Harvey, H. Millar, L. Eubel, V. Jänsch, J.L. Kruft, H.-P.Braun Heazlewood, 
Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes 
contain plant specific subunits, Plant Mol. Biol. 56 (2004) 77–90, https://doi.org/ 
10.1007/s11103-004-2316-2. 

[123] S. Huang, A.H. Millar, Succinate dehydrogenase: the complex roles of a simple 
enzyme, Physiol. Metab. 16 (2013) 344–349, https://doi.org/10.1016/j. 
pbi.2013.02.007. 

[124] P. Figueroa, G. Léon, A. Elorza, L. Holuigue, A. Araya, X. Jordana, The four 
subunits of mitochondrial respiratory complex II are encoded by multiple nuclear 
genes and targeted to mitochondria in Arabidopsis thaliana, Plant Mol. Biol. 50 
(2002) 725–734, https://doi.org/10.1023/A:1019926301981. 

[125] N. Hamann, E. Bill, J.E. Shokes, R.A. Scott, M. Bennati, R. Hedderich, The CCG- 
domain-containing subunit SdhE of succinate:quinone oxidoreductase from 
sulfolobus solfataricus P2 binds a [4Fe–4S] cluster, JBIC J. Biol. Inorg. Chem. 14 
(2009) 457–470, https://doi.org/10.1007/s00775-008-0462-8. 

[126] A.J. Fielding, K. Parey, U. Ermler, S. Scheller, B. Jaun, M. Bennati, Advanced 
electron paramagnetic resonance on the catalytic iron–sulfur cluster bound to the 
CCG domain of heterodisulfide reductase and succinate: quinone reductase, JBIC 
J. Biol. Inorg. Chem. 18 (2013) 905–915, https://doi.org/10.1007/s00775-013- 
1037-x. 

[127] M.B. McNeil, J.S. Clulow, N.M. Wilf, G.P.C. Salmond, P.C. Fineran, SdhE is a 
conserved protein required for flavinylation of succinate dehydrogenase in 
bacteria *, J. Biol. Chem. 287 (2012) 18418–18428, https://doi.org/10.1074/jbc. 
M111.293803. 

[128] M.B. McNeil, H.G. Hampton, K.J. Hards, B.N.J. Watson, G.M. Cook, P.C. Fineran, 
The succinate dehydrogenase assembly factor, SdhE, is required for the 
flavinylation and activation of fumarate reductase in bacteria, FEBS Lett. 588 
(2014) 414–421, https://doi.org/10.1016/j.febslet.2013.12.019. 
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of an archaeal succinate dehydrogenase in the membrane-bound state, Eur. J. 

Biochem. 232 (1995) 563–568, https://doi.org/10.1111/j.1432- 
1033.1995.563zz.x. 

[198] A. Bezawork-Geleta, J. Rohlena, L. Dong, K. Pacak, J. Neuzil, Mitochondrial 
complex II: at the crossroads, Trends Biochem. Sci. 42 (2017) 312–325, https:// 
doi.org/10.1016/j.tibs.2017.01.003. 

[199] T. Iwasaki, T. Wakagi, T. Oshima, Resolution of the aerobic respiratory system of 
the thermoacidophilic archaeon, sulfolobus sp. Strain 7: III. The archaeal novel 
respiratory compleX II (succinate:caldariellaquinone oxidoreductase complex) 
inherently lacks heme group (*), J. Biol. Chem. 270 (1995) 30902–30908, 
https://doi.org/10.1074/jbc.270.52.30902. 

[200] E. Guccione, A. Hitchcock, S.J. Hall, F. Mulholland, N. Shearer, A.H.M. Van Vliet, 
D.J. Kelly, Reduction of fumarate, mesaconate and crotonate by mfr, a novel 
oxygen-regulated periplasmic reductase in campylobacter jejuni, Environ. 
Microbiol. 12 (2010) 576–591, https://doi.org/10.1111/j.1462- 
2920.2009.02096.x. 

[201] J.W. Cooley, C.A. Howitt, W.F.J. Vermaas, succinate:quinol oxidoreductases in 
the cyanobacterium Synechocystis sp. strain PCC 6803: presence and function in 
metabolism and electron transport, J. Bacteriol. 182 (2000) 714–722, https://doi. 
org/10.1128/JB.182.3.714-722.2000. 

[202] M. Muira, M. Kameya, H. Arai, M. Ishii, Y. Igarashi, A soluble NADH-dependent 
fumarate reductase in the reductive tricarboxylic acid cycle of hydrogenobacter 
thermophilus TK-6, J. Bacteriol. 190 (2008) 7170–7177, https://doi.org/ 
10.1128/JB.00747-08. 

[203] S.E. Partovi, F. Mus, A.E. Gutknecht, H.A. Martinez, B.P. Tripet, B.M. Lange, J. 
L. DuBois, J.W. Peters, Coenzyme M biosynthesis in bacteria involves phosphate 
elimination by a functionally distinct member of the aspartase/fumarase 
superfamily, J. Biol. Chem. 293 (2018) 5236–5246, https://doi.org/10.1074/jbc. 
RA117.001234. 

[204] P. Evans, D. Parks, G.L. Chadwick, S.J. Robbins, V.J. Orphan, S.D. Golding, 
G. Tyson, Methane metabolism in the archaeal phylum bathyarchaeota revealed 
by genome-centric metagenomics, Science 350 (2015) 434–438, https://doi.org/ 
10.1126/science.aac7745. 

[205] C.S. Lazar, B.J. Baker, K. Seitz, A.S. Hyde, G.J. Dick, K.-U. Hinrichs, A.P. Teske, 
Genomic evidence for distinct carbon substrate preferences and ecological niches 
of bathyarchaeota in estuarine sediments, Environ. Microbiol. 18 (2016) 
1200–1211, https://doi.org/10.1111/1462-2920.13142. 

[206] Y. He, M. Li, V. Perumal, X. Feng, J. Fang, J. Xie, S.M. Sievert, F. Wang, Genomic 
and enzymatic evidence for acetogenesis among multiple lineages of the archaeal 
phylum bathyarchaeota widespread in marine sediments, Nat. Microbiol. 1 
(2016) 16035, https://doi.org/10.1038/nmicrobiol.2016.35. 

[207] Y. Liu, Z. Zhou, J. Pan, B.J. Baker, J.-D. Gu, M. Li, Comparative genomic inference 
suggests mixotrophic lifestyle for thorarchaeota, ISME J. 12 (2018) 1021–1031, 
https://doi.org/10.1038/s41396-018-0060-x. 

[208] T. Kurokawa, J. Sakamoto, Purification and characterization of succinate: 
menaquinone oxidoreductase from corynebacterium glutamicum, Arch. 
Microbiol. 183 (2005) 317–324, https://doi.org/10.1007/s00203-005-0775-8. 

[209] M. Matsson, D. Tolstoy, R. Aasa, L. Hederstedt, The distal heme Center in Bacillus 
subtilis succinate: quinone reductase is crucial for electron transfer to 
menaquinone, Biochemistry 39 (2000) 8617–8624, https://doi.org/10.1021/ 
bi000271m. 

[210] C.R.D. Lancaster, Succinate:quinone oxidoreductases – what can we learn from 
wolinella succinogenes quinol:fumarate reductase? FEBS Lett. 504 (2001) 
133–141, https://doi.org/10.1016/S0014-5793(01)02706-5. 

[211] R.A. Weingarten, M.E. Taveirne, J.W. Olson, The dual-functioning fumarate 
reductase is the sole succinate: quinone reductase in campylobacter jejuni and is 
required for full host colonization, J. Bacteriol. 191 (2009) 5293–5300, https:// 
doi.org/10.1128/JB.00166-09. 

[212] E. Bapteste, L. van Iersel, A. Janke, S. Kelchner, S. Kelk, J.O. McInerney, D. 
A. Morrison, L. Nakhleh, M. Steel, L. Stougie, J. Whitfield, Networks: expanding 
evolutionary thinking, Trends Genet. 29 (2013) 439–441, https://doi.org/ 
10.1016/j.tig.2013.05.007. 

[213] S. Nelson-Sathi, T. Dagan, G. Landan, A. Janssen, M. Steel, J.O. McInerney, 
U. Deppenmeier, W.F. Martin, Acquisition of 1,000 eubacterial genes 
physiologically transformed a methanogen at the origin of haloarchaea, Proc. 
Natl. Acad. Sci. 109 (2012) 20537–20542, https://doi.org/10.1073/ 
pnas.1209119109. 

[214] S. Nelson-Sathi, F.L. Sousa, M. Roettger, N. Lozada-Chávez, T. Thiergart, 
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